Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129659

ABSTRACT

Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.

2.
PLoS One ; 18(11): e0293322, 2023.
Article in English | MEDLINE | ID: mdl-37917746

ABSTRACT

Disparities for women and minorities in science, technology, engineering, and math (STEM) careers have continued even amidst mounting evidence for the superior performance of diverse workforces. In response, we launched the Diversity and Science Lecture series, a cross-institutional platform where junior life scientists present their research and comment on diversity, equity, and inclusion in STEM. We characterize speaker representation from 79 profiles and investigate topic noteworthiness via quantitative content analysis of talk transcripts. Nearly every speaker discussed interpersonal support, and three-fifths of speakers commented on race or ethnicity. Other topics, such as sexual and gender minority identity, were less frequently addressed but highly salient to the speakers who mentioned them. We found that significantly co-occurring topics reflected not only conceptual similarity, such as terms for racial identities, but also intersectional significance, such as identifying as a Latina/Hispanic woman or Asian immigrant, and interactions between concerns and identities, including the heightened value of friendship to the LGBTQ community, which we reproduce using transcripts from an independent seminar series. Our approach to scholar profiles and talk transcripts serves as an example for transmuting hundreds of hours of scholarly discourse into rich datasets that can power computational audits of speaker diversity and illuminate speakers' personal and professional priorities.


Subject(s)
Diversity, Equity, Inclusion , Ethnicity , Female , Humans , Minority Groups , Technology
3.
Mol Psychiatry ; 28(10): 4280-4293, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37488168

ABSTRACT

Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/diagnosis , Genes, Immunoglobulin , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Cell Line
4.
PLoS One ; 18(5): e0282958, 2023.
Article in English | MEDLINE | ID: mdl-37256873

ABSTRACT

Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Humans , Radiation, Ionizing , Brain , Neurons , Organoids
5.
PLoS Biol ; 20(11): e3001845, 2022 11.
Article in English | MEDLINE | ID: mdl-36327326

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was rapidly declared a pandemic by the World Health Organization (WHO). Early clinical symptomatology focused mainly on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are now well-documented. To experimentally determine whether SARS-CoV-2 could replicate in and affect human brain cells, we infected iPSC-derived human brain organoids. Here, we show that SARS-CoV-2 can productively replicate and promote death of neural cells, including cortical neurons. This phenotype was accompanied by loss of excitatory synapses in neurons. Notably, we found that the U.S. Food and Drug Administration (FDA)-approved antiviral Sofosbuvir was able to inhibit SARS-CoV-2 replication and rescued these neuronal alterations in infected brain organoids. Given the urgent need for readily available antivirals, these results provide a cellular basis supporting repurposed antivirals as a strategic treatment to alleviate neurocytological defects that may underlie COVID-19- related neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Infant, Newborn , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Organoids , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brain , Cell Death , Synapses
6.
Science ; 371(6526): 314, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33446561
7.
Biol Psychiatry ; 88(2): 139-149, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31732108

ABSTRACT

BACKGROUND: Approximately 1 in every 50 to 100 people is affected with bipolar disorder (BD), making this disease a major economic burden. The introduction of induced pluripotent stem cell methodology enabled better modeling of this disorder. METHODS: Having previously studied the phenotype of dentate gyrus granule neurons, we turned our attention to studying the phenotype of CA3 hippocampal pyramidal neurons of 6 patients with BD compared with 4 control individuals. We used patch clamp and quantitative polymerase chain reaction to measure electrophysiological features and RNA expression by specific channel genes. RESULTS: We found that BD CA3 neurons were hyperexcitable only when they were derived from patients who responded to lithium; they featured sustained activity with large current injections and a large, fast after-hyperpolarization, similar to what we previously reported in dentate gyrus neurons. The higher amplitudes and faster kinetics of fast potassium currents correlated with this hyperexcitability. Further supporting the involvement of potassium currents, we observed an overexpression of KCNC1 and KCNC2 in hippocampal neurons derived from lithium responders. Applying specific potassium channel blockers diminished the hyperexcitability. Long-term lithium treatment decreased the hyperexcitability observed in the CA3 neurons derived from lithium responders while increasing sodium currents and reducing fast potassium currents. When differentiating this cohort into spinal motor neurons, we did not observe any changes in the excitability of BD motor neurons compared with control motor neurons. CONCLUSIONS: The hyperexcitability of BD neurons is neuronal type specific with the involvement of altered potassium currents that allow for a sustained, continued firing activity.


Subject(s)
Bipolar Disorder , Bipolar Disorder/drug therapy , Dentate Gyrus , Hippocampus , Humans , Neurons , Patch-Clamp Techniques , Pyramidal Cells , Shaw Potassium Channels
8.
J Minim Invasive Gynecol ; 24(6): 897-898, 2017.
Article in English | MEDLINE | ID: mdl-28274872

ABSTRACT

STUDY OBJECTIVE: To show a new approach for orthotopic human ovarian tissue transplantation via robot-assisted laparoscopic surgery. DESIGN: A step-by-step video explanation of the surgical technique (Canadian Task Force classification III). SETTING: Academic medical center. INTERVENTIONS: The robot-assisted transplantation approach consisted of 3 steps: (1) reconstruction of the ovarian tissue graft, (2) preparation of the contralateral menopausal ovary as the recipient site, and 3) transplantation of the reconstructed graft to the bivalved contralateral ovary. Institutional review board approval was obtained. MEASUREMENTS AND MAIN RESULTS: Although still experimental, cryopreservation and subsequent transplantation of frozen-thawed ovarian tissue are currently the only available methods for prepubertal girls and young women with cancer who are not eligible for established fertility preservation options such as oocyte or embryo cryopreservation [1]. We performed the first reported autologous ovarian transplantation with a conventional laparoscopic technique [2]. To date, over 60 babies have been born after the orthotopic transplantation of cryopreserved ovarian tissue, and this number is growing [3,4]. Until recently, all of these children were born from ovarian transplants that were performed via laparotomy or conventional laparoscopy [5]. We have recently developed a robot-assisted ovarian transplantation procedure that uses an extracellular matrix scaffold to facilitate ovarian reconstruction, handling, and revascularization. Both of the procedures resulted in robust ovarian function and births [6]. The purpose of this video reports the surgical technique in detail, which uses the da Vinci Xi (Intuitive Surgical Inc, Sunnyvale, CA) robotic system for transplantation, and a decellularized human extracellular tissue matrix (Alloderm; LifeCell Corp, Branchburg, NJ) for graft reconstruction. CONCLUSION: Robotic ovarian transplantation may have several advantages, which include precision, more delicate graft handling, and reduced time from tissue thawing to transplantation. The collective usefulness of the extracellular tissue matrix may enhance this technique by enabling a niche for ovarian reconstruction and potentially enhanced revascularization. The feasibility and comparative advantages of this technique are currently being studied in ongoing trials.


Subject(s)
Fertility Preservation/methods , Gynecologic Surgical Procedures/methods , Laparoscopy/methods , Ovary/transplantation , Robotic Surgical Procedures/methods , Adult , Child , Cryopreservation/methods , Female , Freezing , Humans , Infant, Newborn , Ovary/surgery , Pregnancy , Transplantation, Autologous , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...